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We study Holstein polarons in three-dimensional anisotropic materials. Using a variational exact diagonal-
ization technique we provide highly accurate results for the polaron mass and polaron radius. With these data
we discuss the differences between polaron formation in dimensions one and three and at small and large
phonon frequencies. Varying the anisotropy we demonstrate how a polaron evolves from a one-dimensional to
a three-dimensional quasiparticle. We thereby resolve the issue of polaron stability in quasi-one-dimensional
substances and clarify to what extent such polarons can be described as one-dimensional objects. We finally
show that even the local Holstein interaction leads to an enhancement of anisotropy in charge-carrier motion.
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I. INTRODUCTION

In materials with a local coupling of the charge carriers to
optical phonons a tendency toward formation of polarons
prevails. How polarons form and which properties they pos-
sess have been intensively studied using the Holstein model
�for a recent review see Ref. 1�. Much work was devoted to
the question of how polaronic properties depend on dimen-
sionality. For zero phonon frequency polaron formation is
known to be fundamentally different in dimensions one �1D�
and three �3D�: While in 1D a polaron exists for all coupling
strengths, in 3D a transition from a free electron to a self-
trapped polaron occurs at a finite coupling strength.2 While
the 3D polaron is small, in 1D large polarons with a size of
many lattice constants may exist.3 This qualitative difference
is peculiar to the static case. At finite phonon frequencies no
strict self-trapping transition occurs.4 Instead a smooth cross-
over from a light electron to a heavy �small� polaron takes
place with increasing coupling strength. Only in the adiabatic
regime of small phonon frequencies, large and heavy po-
larons can be found in 1D.5 In the antiadiabatic limit of large
phonon frequencies polaron properties do not depend on di-
mension. For intermediate phonon frequencies numerical
studies6 reveal that in 3D polarons form as smaller and
heavier quasiparticles if compared to the 1D case, but a clear
distinction as for zero phonon frequency or in the adiabatic
regime is not found.

Most work on the Holstein polaron problem was per-
formed for 1D or isotropic systems. Much less attention is
paid to the question of how polaron properties in anisotropic
materials, e.g., molecular crystals,7 interpolate between the
1D and 3D behavior. In particular, even polarons in quasi-1D
systems, such as in organic conductors like the Bechgaard
salts, are frequently described by the 1D Holstein model,
neglecting the possibility of electron motion transverse to a
quasi-1D chain. For zero phonon frequency Emin8 showed
that already tiny electronic transfer integrals perpendicular to
the chain suffice to destabilize a large 1D polaron, resulting
in a free electron as in 3D below the self-trapping transition.
This result not only puts the existence of large �adiabatic�
polarons in real materials in doubt but also raises the ques-

tion to which degree polarons in quasi-1D systems can be
described as true 1D polarons. In the present work we study
to which extent the scenario described for zero phonon fre-
quency translates to finite phonon frequencies beyond the
extreme adiabatic regime.

II. ANISOTROPIC POLARON MODEL

To address this fundamental question, we consider the 3D
Holstein polaron model with anisotropic hopping,

H = − �
i=x,y,z

ti �
n

�cn+ei

† cn + cn
†cn+ei

�

− ��p�0�
n

�bn
† + bn�cn

†cn + �0�
n

bn
†bn. �1�

Here n labels the sites of a cubic lattice and ei for i=x ,y ,z
denotes the unit lattice vector in the respective direction. �0
is the phonon frequency and �p is the electron-phonon cou-
pling strength. For the electron transfer integrals, we set tx
= t�, ty = tz= t�. As t� / t� grows, the system described by
Hamiltonian �1� evolves from a 1D �t� / t� =0� to an isotropic
3D system �t� / t� =1�. For intermediate values of t� / t�, the
system is anisotropic but symmetric with respect to the y ,z
direction, i.e., the chains in a quasi-1D system �t� / t� �1� are
oriented along the x direction.

In addition to Ref. 8, the anisotropic Holstein model, Eq.
�1�, has been studied in Refs. 9 and 10 in certain limiting
cases or using approximate variational techniques. At
present, no conclusive answer for small-to-intermediate pho-
non frequency has been given. In this work, we present ac-
curate results for the infinite system using the variational
exact diagonalization technique developed in Ref. 11. The
error of all results is generally much less than 1% and
about 1% for the polaron radius in the crossover regime at
small �0 in 3D. Our presentation concentrates on small-to-
intermediate phonon frequencies �0 / t� =0.1. . .2.0. We justify
this choice in the next paragraphs.
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III. NUMERICAL RESULTS AND DISCUSSION

A. 1D and 3D cases

The destabilization of a polaron at small t� / t� occurs only
if the polaron is large.8 We therefore begin our discussion
with the basic question: In what cases do large polarons exist
at finite phonon frequencies? Using the electron-phonon cor-
relation function ��r�=�n��0��bn+r

† +bn+r�cn
†cn��0�, the po-

laron radius, which measures the extension of the phonon
cloud surrounding the electron, is defined as

R� = 	�
r

�rx�2��r�

2�
r

��r� 

1/2

, �2�

and similarly for R� with rx replaced by ry or rz. Note that
for the Holstein model, �r��r�=2��p /�0.

How the distinctive features of polaron formation found
for zero phonon frequency persist at small �0 / t� is evident in
a comparison of the 1D �t� / t� =0� and 3D �t� / t� =1� curves
for R=R� =R� in Fig. 1, given as a function of �=�p /2Dt�. In
3D the steep decrease in R for �0 / t=0.5 in the vicinity of
�=1 is a precursor of the self-trapping transition for �0=0,
which takes place at �c

3D�0.90. In 1D the polaron radius
decreases steadily with � and no crossover region can be
identified. Although the latter behavior is reminiscent of the
1D large-to-small polaron crossover at �0=0, we observe
that even for small phonon frequency �0 / t� =0.1 no large
polaron is found. In Ref. 12 it was shown that, independent
of dimension, for weak coupling the polaron radius ap-
proaches

lim
�p→0

R� = �t�/�0 �3�

�compare the 1D and 3D curve for �0 / t� =0.5 in Fig. 1�. The
polaron radius is bounded by that limiting value, e.g., for
�0 / t� =0.1, at most R� �3.2. To obtain a large polaron of
radius greater than 5 or 10, �0 / t� must be less than 0.01–0.04
for weak coupling �p /�0 , ��1. Furthermore the polaron
shrinks rapidly with increasing coupling. Even for �0=0 a

coupling of, say, �	0.25 leads to a polaron radius of only
R
2. The condition on the phonon frequency becomes even
more restrictive if we ask for large polarons with substantial
mass, in contrast to the light large polarons at weak coupling.

The polaron mass, which is probably the most important
quantity to characterize a polaron, is defined as

mi
−1 = � �2E�k�

�ki
2 �

k=0

, �4�

where E�k� is the ground-state energy at momentum k. We
set m� =mx and m�=my =mz. In the absence of electron-
phonon coupling ��p=0�, the masses are given by m�

0

=1 /2t� and m�
0 =1 /2t�. At �0=0 the �3D� transition from a

free electron to a self-trapped polaron coincides with a jump
of mi from mi=mi

0 �below the transition� to mi=� �above the
transition�. For finite �0, m depends analytically on the cou-
pling strength �p.4

In Fig. 2 we show the polaron mass m=m� as a function
of the coupling strength �=�p /2Dt for different �0 in dimen-
sion D=1,3. Remember that the data for m correspond to the
exact numerical solution of the Holstein model. As for the
radius the distinctive differences of polaron formation in 1D
and 3D are evident in a comparison of the corresponding
curves for �0 / t� =0.5. While in 1D the polaron mass in-
creases steadily with �, a steep increase in m� occurs in the
vicinity of �c

3D for 3D. One can therefore locate, for small
phonon frequency �0 / t� 
1 in 3D, the crossover from a light
particle to a heavy polaron in the region �
1, while in 1D
no crossover region can be identified. The differences be-
tween 1D and 3D vanish for larger phonon frequencies
�0 / t� 	1 �not shown here� where the mass indicates the con-
tinuous evolution from a light to a heavy polaron with in-
creasing �. In the antiadiabatic regime �0 / t� �1, the relation
mi /mi

0=exp�g2�, with g2=�p /�0, holds independent of di-
mension.

The behavior of the 1D polaron mass for small phonon
frequency is reminiscent of the large-to-small polaron cross-
over in the �0=0 limit. However, for �0=0 the mass of the
1D polaron is strictly infinite for any coupling strength in
1D. The �0=0 result therefore does not provide a quantita-
tive prediction for the polaron mass at any finite phonon
frequency. Owing to that restriction, it is also not sufficient to
establish the existence of large polarons with substantial
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FIG. 1. �Color online� Polaron radius R as a function of cou-
pling � for dimension D=1 �t�=0� and 3 �isotropic case t� = t��.
The dotted curve gives the radius for �0=0 and 1D, which is de-
fined according to Eq. �2� using the electron density ���r��2 instead
of the correlation function ��r�.
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FIG. 2. �Color online� Polaron mass m as a function of coupling
� for the parameters as in the previous figure.
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mass renormalization even for the adiabatic case �0 / t� �1.
Instead we see in Fig. 2 that even for a small phonon fre-
quency �0 / t� =0.1 the mass of the 1D polaron is still close to
unity for those coupling strengths �
0.25, for which a large
polaron is found for sufficiently small �0 / t�. To obtain po-
larons with large mass and large radius therefore requires
small coupling strengths ��1 �to allow for a large radius�
and even smaller phonon frequencies �0 / t� �� �to allow for
a large mass�. Consequently, such heavy adiabatic large po-
larons may exist only at extremely small phonon frequencies
�0 / t� 
0.01. We note that �i� in general no large-to-small
polaron crossover occurs even at small phonon frequencies
in 1D, �ii� the adiabatic regime of large �heavy� polarons
occupies only the very narrow parameter region of tiny pho-
non frequencies, and thus �iii� the destabilization of large
quasi-1D polarons at small t� / t� Emin obtained for �0=0
can be expected to be relevant only in that narrow region.
Qualitatively, we expect strong deviations from the findings
for �0=0 even for small-to-intermediate phonon frequencies
beyond the extreme adiabatic regime.

B. Spatial anisotropic case

Let us now begin with the quantitative discussion of the
anisotropic case. Since in the extreme adiabatic regime of
large �heavy� polarons the question of polaron properties in
anisotropic materials was already settled by Emin;8 we ex-
clude this narrow region from our further consideration. In-
stead we concentrate on the broader regime of small-to-
intermediate phonon frequencies.

Obviously, the polaron radius does not indicate per se to
which degree the polaron ceases to be a true 1D particle for
small t� / t�. We may instead use the ratio R� /R� �see Fig. 3�,
which we interpret as a measure of the “one-dimensionality”
of the polaron: For R� /R� =0 �R� /R� =1�, the polaron is a
fully 1D �isotropic 3D� object. We see that already for small
t� / t� the ratio R� /R� deviates significantly from zero, but
R� /R� is a continuous function of t� / t� in contrast to the
behavior in the �0=0 limit. For weak coupling, we recover
R� /R� =�t� / t�, as can be derived by perturbation theory.12

For strong coupling, the asymptotic behavior R� /R� = t� / t� is
approached. For intermediate coupling ��p / t� =4.5 in the fig-
ure� we observe how the curve interpolates between the

strong-coupling straight line at smaller t� / t� and the weak-
coupling square root at larger t� / t�. To understand this ob-
servation, we shall now use the polaron mass to further
clarify how the polaron properties change with t� / t�.

In Fig. 4 we show the polaron mass m� as a function of the
coupling strength �=�p /2�t� +2t�� for different �0 and an-
isotropy t� / t�. We see that the curves for intermediate values
of t� / t� smoothly interpolate between the 1D and 3D cases.
In contrast to the �0=0 limit a sudden transition from 1D to
3D behavior at small t� / t� is missing. Nevertheless, for
�0 / t� =0.5 and �
1, the mass m� increases by a huge factor
if t� / t� grows from zero to one. Note that this scenario is
opposite to polaron destabilization in the �0=0 limit where a
large polaron evolves into a free electron at weaker coupling
��1 �cf. R��0=0� in Fig. 1�.

In Fig. 5 we show m� as a function of t� / t� for fixed �p.
Generally, the polaron mass m� decreases with increasing t�.
For larger phonon frequencies, m� depends only weakly on
t� / t�, in agreement with our considerations above. For small
phonon frequency ��0 / t� =0.5�, we see how a heavy 1D po-
laron with m� /m�

0�1 evolves into a light 3D particle with
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FIG. 3. �Color online� Ratio R� /R� of polaron radii as a func-
tion of anisotropy t� / t� for �0 / t� and �p / t� as indicated. Here the
dotted curve gives the weak-coupling result R� /R� =�t� / t�.
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FIG. 5. �Color online� Polaron mass m� as a function of aniso-
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m� /m�
0�1 as t� / t� grows from zero to one. This behavior

occurs if the coupling is sufficiently large to create a heavy
polaron in 1D �i.e., �p /2t� �1� but below the heavy polaron
crossover region �
1 in 3D seen in the left panel of Fig. 4
�i.e., �p /6t� �1�. Exactly then the ratio R� /R� interpolates
between the strong-coupling and weak-coupling curves �cf.
Fig. 3�. Based on this condition a rough estimate for the t� / t�

value when the particle finally becomes light �i.e., m� /m�
0

�1� is provided by the comparison of coupling energy to
kinetic energy, yielding �p /2�t� +2t��	1 or t� / t� 	 ��p / t�

−2� /4, e.g., t� / t� 	0.5 for �p / t� =4.5. This estimate does not
essentially depend on phonon frequency. Especially, our
findings persist also for �0 / t� �0.5.

The observed evolution from a heavy to a light particle at
small-to-intermediate phonon frequency is the equivalent of
polaron destabilization in the �0=0 limit. We however note
significant differences to the �0=0 scenario. First, it requires
coupling strengths for which the 1D polaron is not large. If
the coupling is weak enough to allow for a large 1D polaron,
no significant change in the polaron mass can occur on in-
creasing t� / t� since the 1D mass is already of the order
m� /m�

0
1. Recall that we exclude the extreme adiabatic re-
gime, where this statement may be violated for extremely
small phonon frequencies, from our considerations. Second,
in contrast to the behavior at zero phonon frequency, the
change in m� takes place in a large range of t� / t� and does
not occur as a rapid crossover in the vicinity of a small t� / t�

value. These differences clearly show that the concept of
polaron destabilization in quasi-1D systems is only of re-
stricted relevance at finite phonon frequencies. This is a con-
sequence of the fact that the arguments for �0=0 rely on the
existence of large polarons. As discussed before, those fail to
exist even at small phonon frequencies �0 / t� 
0.1.

A repeated question raised for quasi-1D systems is
whether a local or isotropic electron-phonon interaction can
enhance the anisotropy in the electronic transfer integrals
leading to m� /m� 
 �t� / t��−1. Large anisotropies in polaron
mobility that exceed the estimates from, e.g., band-structure
calculations by several orders of magnitude can be explained
if acoustic phonons are taken into account.13 It is common
belief that a similar mechanism is absent in the Holstein
model due to the purely local interaction with isotropic op-
tical phonons.

As a measure for the anisotropy of mass renormalization,
we define

A =
m�/m�

0 − m�/m�
0

m�/m�
0 , �5�

or equivalently m� /m� = �1+A�m�
0 /m�

0. In the antiadiabatic
strong-coupling limit, with mi /mi

0=exp�g2�, the mass renor-
malization is isotropic �A=0�, but for smaller phonon fre-
quency A�0 is possible. An enhancement of anisotropy cor-
responds to A
0.

In Fig. 6 we show m�, m�, and the ratio A for three
choices of parameters. We see that generally m�
m� and A
is maximal for t�=0, while of course A=0 for t� / t� =1. Evi-
dently, A is largest for small phonon frequency and large

coupling when deviations from the antiadiabatic limit with
A=0 are most significant.

From first-order perturbation theory in t� we conclude
that A→� for t�→0, where

� =
�m�

0/m��t�=0 − Z

Z
�6�

is the fractional difference between the quasiparticle weight
Z= ���0�ck=0

† �vac��2 at momentum k=0 ���0� denotes the k
=0 ground state� and the inverse mass renormalization
�m�

0 /m��t�=0 at t�=0. This relation holds independent of di-
mension. As a consequence of the momentum dependence of
the polaron self-energy, ��0 is possible.6 That �
0, and
thus A
0, results from effective long-range hopping pro-
cesses induced by electron-phonon coupling, which reduce
�m�

0 /m��t�=0 compared to 1 /Z. In a certain sense, � measures
the deviation from the antiadiabatic strong-coupling result
mi /mi

0=Z−1=exp�g2� when �=0.
In Fig. 7 we show � for fixed g2 as a function of �0. For

�0 / t�1, the ratio � is close to zero as the antiadiabatic limit
is approached. For �0→0 and fixed g2, the ratio � converges
to zero since the weak-coupling regime is reached. Decreas-
ing �0 or increasing �p, the ratio � and thus A can be made
very large. For the parameters plotted, A can attain values as
large as 27%. Note that A is already large for small coupling
�0 / t� provided �0 / t� is small �see inset in Fig. 7�, which
implies that the mechanism described here is relevant for
realistic materials.
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IV. CONCLUSIONS

To sum up, the exact results provided in this work help to
clarify the issue of polaron formation in anisotropic 3D ma-
terials, including the 1D and isotropic 3D case. In the ex-
treme adiabatic regime, where large heavy 1D polarons exist
for tiny phonon frequencies �0 / t� �0.1, the scenario of po-
laron destabilization given by Emin8 applies. We present
complementary results for the broader regime of small-to-
intermediate phonon frequency and small-to-strong coupling
strength. In combination with Emin’s work at least the most
fundamental answers to the Holstein polaron anisotropy
problem are thereby given. The regime of very strong cou-
pling or large phonon frequency, where a polaron is always
small or its properties do not depend on dimension, deserves
no further exploration in that context.

Our findings have two major implications. First, polaron
destabilization occurs only in the extreme adiabatic regime
but the concept does not carry over to finite phonon frequen-
cies without significant modifications. Although it is possible
to drive a heavy 1D polaron into a light 3D particle by in-
creasing the perpendicular electronic transfer integral, a
smooth crossover takes place instead of an instability. In any

case, polarons in quasi-1D materials can be described by the
1D Holstein model for small perpendicular transfer integrals.
The second implication is that even a local Holstein interac-
tion enhances the anisotropy in electron motion. For small
phonon frequencies this enhancement is of significant size
already at weak-to-moderate coupling. As a question for fu-
ture research we mention that the anisotropy enhancement
becomes even more important for longer-ranged electron-
phonon coupling.14 We stress that the frequent assumption
that the Holstein interaction leads only to isotropic changes
in material properties is not true. Experimentally observed
anisotropic behavior provides no indication against a domi-
nating short-range Holstein-type coupling.
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